## Lesson 1: How I get to School Lesson Snapshot

#### **Overview, Grades 3-5**

*Big Idea:* Engineering structure, particularly bridges, allow us to arrive at our destinations in a reasonable amount of time.

*Teacher's Note*: Big ideas should be made explicit to students by writing them on the board and/or reading them aloud.

*Purpose of Lesson:* To introduce students to common types of bridges, their components, and how they affect our daily lives.

*Selected Learning Objectives:* Students will learn to:

- 1. Describe different types of bridges and design features that make them unique.
- 2. Identify three components of a bridge and what roles the components serve in the bridge system.
- *3.* Explain how bridges make our daily transportation needs easier and more effective. *Lesson Duration:* Two to Three hours.

#### **Activity Highlights**

*Engagement:* Students, working in groups of 2 or 3, will be asked to compare and contrast their commutes to school.

*Exploration:* Students, working in pairs, will look at bridges provided online.

*Explanation:* The teacher will discuss bridge types and design. Additionally, the teacher will outline the history on bridges in Indiana.

*Extension:* Students, working in pairs, revisit the exploration activity.

*Enrichment:* Students, working in groups of two, will create paper bridge models.

### Lesson 1: 5-E Lesson Plan

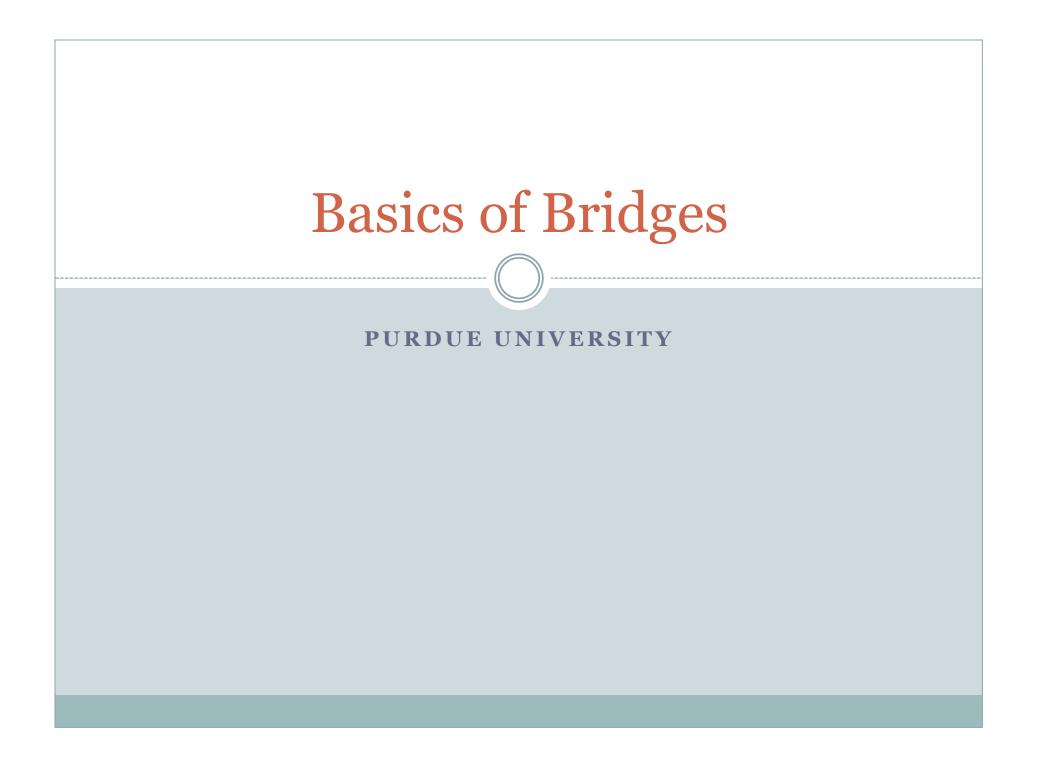
#### Engagement

- 1. Students, working in groups of 2 or 3, will be asked to compare and contrast their morning trips to school. The teacher will ask the follow questions to guide discussion:
  - a. What makes it faster to get to school?
    - i. Cars
    - ii. Buses
    - iii. Roads
  - b. What makes it safer?
    - i. Traffic Lights
    - ii. Police officers
    - iii. Speed limits
    - iv. Guard Rails
  - c. What makes it possible?
    - i. Roads
    - ii. Bridges
- 2. Students will report out what they discussed in groups.
- 3. Teacher will list all of the students ideas, and highlight important technologies that make our life safer, easier, and possible
- 4. Teacher will highlight a local bridge that several student cross on the way to school.
- 5. Teacher will ask the following question:
  - a. How would you make it to school without that bridge?
- 6. Teacher and students will discuss other ways to get across as if the bridge wasn't there.
  - a. Ferry, (Water)
  - b. Longer route
- 7. Teacher will state that bridges make our lives much easier and safer.

#### **Exploration**

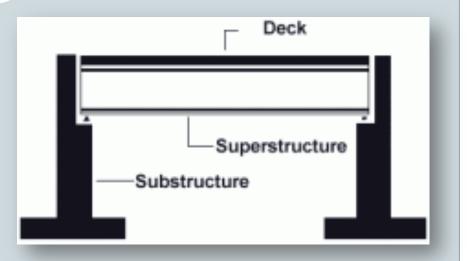
- 1. Students, working in pairs, will view bridges of Indiana online at:
  - a. http://earchives.lib.purdue.edu/cdm4/browse.php?CISOROOT=/inbridge
- 2. Students will discover 10 unique bridges and record way they are unique from other bridges on the website. Student Resource 1, Lesson 1

#### **Explanation**

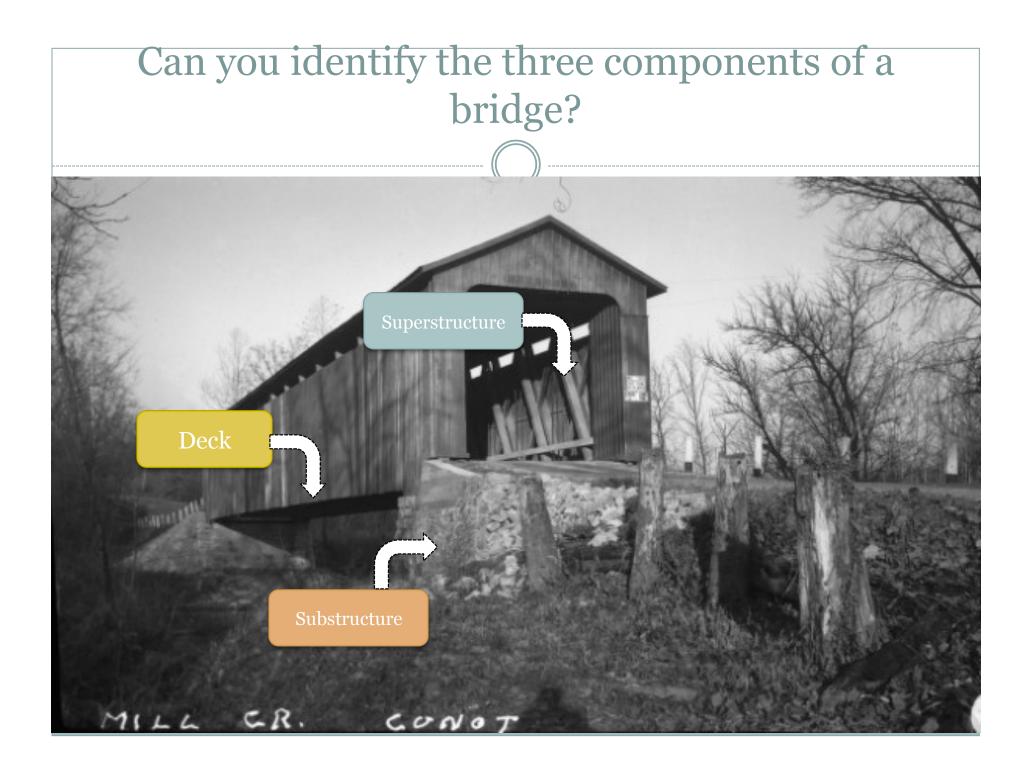

- 1. The teacher will present on bridge design features and components.
  - i. Teacher Resource 1, Lesson 1

#### Extension

1. Students, working in pairs, revisit the exploration activity. Teacher Resource 1, Lesson 1, Slide 4


#### Enrichment

- 1. Students, working individually, will create paper bridge models consisting of a deck, superstructure and substructure.
  - a. Student Resource 2, Lesson 1




# Three main parts of every Bridge

- Every Bridge has:
  - o Deck
    - × Allows people to cross
  - Superstructure
    - × Supports the deck "Span"
  - Substructure
    - × Supports the Superstructure
    - × Connects to the environment



Span – Distance from one side of the bridge to the other.



# Revisit the Historical Bridges of Indiana

# **Extension Activity**

- Visit PBS Building Big, Bridge Basics
  - o http://www.pbs.org/wgbh/buildingbig/bridge/basics.html
- Select 5 of your bridges from the exploration activity

http://earchives.lib.purdue.edu/cdm4/browse.php?CISOROOT=/inbridge

- Option 1
  - Make a PowerPoint slide for each bridge and identify each component: deck, substructure, superstructure. Similar to previous slide.
  - × Add identification for beam, piers, and span.
- o Option 2
  - × Print out pictures of each bridge. Color code each component: deck, substructure, superstructure.
  - × Add identification for beam, piers, and span.

# Report back

- Is it always clear where the components start and stop?
- What did some of the components look like?
- What common materials was the decks made of? Superstructure? Substructure?
  - Why are decks commonly concrete or wood? *Pushing force*
  - Why are the superstructures steel? *Pulling force*
  - Why are the substructures concrete as well? *Pushing force*
- What common shapes do you see in superstructure?
  Triangles, Squares?

## **Exploration: Bridges of Indiana**

Instructions:

- 1. Visit the following website, Purdue University, e-Archives
  - a. http://earchives.lib.purdue.edu/cdm4/browse.php?CISOROOT=/inbridge
- 2. Search and list, by title, 10 bridges based on a bridge style and record what

material the bridge was constructed with. See Example.

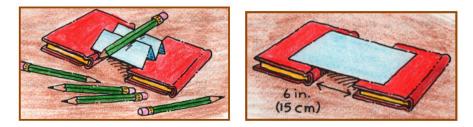
|     | Bridge Title                                                       | Bridge Material | <b>Bridge Style</b><br>"What does the bridge in the<br>picture look like? |
|-----|--------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------|
| Ex. | Clinton, Indiana, Road 63 [63-D-<br>91A; Contr. 2276] Wabash River | Iron and steel  | 3 Arches                                                                  |
| 1   |                                                                    |                 |                                                                           |
| 2   |                                                                    |                 |                                                                           |
| 3   |                                                                    |                 |                                                                           |
| 4   |                                                                    |                 |                                                                           |
| 5   |                                                                    |                 |                                                                           |
| 6   |                                                                    |                 |                                                                           |
| 7   |                                                                    |                 |                                                                           |
| 8   |                                                                    |                 |                                                                           |
| 9   |                                                                    |                 |                                                                           |
| 10  |                                                                    |                 |                                                                           |

## **Enrichment: Bridges, Making them stand!**

Instructions:

1. In the following activity, you will test you understanding of bridge components and how they work together.

Challenge:


Design a bridge out of common materials that will support the weight of two micro-cars.

Requirements:

- 1. Must span at least 5 inches.
- 2. Must be constructed with only the material provided.
- 3. Must consist of three identifiable components:
  - a. Deck
    - i. Can only touch the cars and super structure
  - b. Superstructure
  - c. Substructure

Things to think about:

1. Shapes are important!



2. Use your materials wisely. Your teacher will give you several materials. Test each material and check what you think is the material's strength/weakness.

|     | Material | Push | Pull   |
|-----|----------|------|--------|
| Ex. | Straw    | Weak | Strong |
| 1   |          |      |        |
| 2   |          |      |        |
| 3   |          |      |        |